Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

trans-Dichloridobis(triphenylphosphine)palladium(II)¹

Josefina Pons,^a* Jordi García-Antón,^a Xavier Solans,^b Mercè Font-Bardia^b and Josep Ros^a

^aDepartamento de Química, Unitat de Química Inorgànica, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain, and ^bDepartament de Cristallografia, Universitat de Barcelona, Martí i Franquès, sn, E-08028 Barcelona, Spain Correspondence e-mail: josefina.pons@uab.es

Received 17 March 2008; accepted 27 March 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.006 Å; R factor = 0.037; wR factor = 0.077; data-to-parameter ratio = 26.2.

The title compound, $[PdCl_2{P(C_6H_5)_3}_2]$, has a slightly distorted square-planar geometry, with the chloride ligands coordinated in a *trans* configuration. The Pd atom is located on a centre of inversion.

Related literature

For related literature, see: Ferguson *et al.* (1982); Kitano *et al.* (1983); La Monica & Ardizzoia (1997); Montoya *et al.* (2005); Montoya *et al.* (2006); Mukherjee (2000); Oilunkaniemi *et al.* (2003); Stark *et al.* (1997); Steyl (2006); Trofimenko (1972, 1986).

Experimental

Crystal data

 $\begin{array}{l} [\mathrm{PdCl}_2(\mathrm{C}_{18}\mathrm{H}_{15}\mathrm{P})_2]\\ M_r = 701.84\\ \mathrm{Monoclinic}, \ P2_1/c\\ a = 9.296\ (5)\ \mathrm{\AA}\\ b = 19.889\ (8)\ \mathrm{\AA}\\ c = 10.621\ (6)\ \mathrm{\AA}\\ \beta = 121.71\ (4)^\circ \end{array}$

 $R_{\rm int} = 0.033$

4898 measured reflections

4898 independent reflections 3143 reflections with $I > 2\sigma(I)$

Data collection

```
Mar Research MAR345
diffractometer with image-plate
detector
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
T_{min} = 0.85, T_{max} = 0.87
```

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.037$ 7 restraints $wR(F^2) = 0.077$ H-atom parameters constrainedS = 0.93 $\Delta \rho_{max} = 0.56$ e Å $^{-3}$ 4898 reflections $\Delta \rho_{min} = -0.36$ e Å $^{-3}$ 187 parameters

Table 1

Selected geometric parameters (Å, °).

Pd-Cl	2.3111 (13)	Pd-P	2.3721 (10)
Cl-Pd-P	87.62 (4)	Cl ⁱ -Pd-P	92.38 (4)
Cl-Pd-P-C1 Cl-Pd-P-C13	41.9 (2) -75.7 (2)	Cl-Pd-P-C7	163.9 (2)
Symmetry code: (i) $-x$	+2, -v, -z+1		

Data collection: *MARXDS* (Kabsch, 1988); cell refinement: *AUTOMAR* (Kabsch, 1988); data reduction: *MARSCALE* (Kabsch, 1988); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *PLATON* (Spek, 2003).

Support by the Spanish Ministerio de Educación *y* Cultura (Project CTQ2007–639137) is gratefully aknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2685).

References

Bruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Ferguson, G., McCrindle, R., McAlees, A. J. & Parvez, M. (1982). Acta Cryst. B38, 2679–2681.
- Kabsch, W. (1988). J. Appl. Cryst. 21, 916-924.
- Kitano, Y., Kinoshita, Y., Nakamura, R. & Ashida, T. (1983). Acta Cryst. C39, 1015–1017.
- La Monica, G. & Ardizzoia, G. (1997). Prog. Inorg. Chem. 46, 151-239.
- Montoya, V. J., Pons, J., Branchadell, V. & Ros, J. (2005). *Tetrahedron*, **61**, 12377–12385.
- Montoya, V. J., Pons, J., Solans, X., Font-Bardía, M. & Ros, J. (2006). Inorg. Chim. Acta, 359, 25–34.
- Mukherjee, R. (2000). Coord. Chem. Rev. 203, 151-218.
- Oilunkaniemi, R., Laitinen, R. S., Hannu-Kuure, N. S. & Ahlgrén, M. (2003). J. Organomet. Chem. 678, 95–101.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Stark, J. L. & Whitmire, K. H. (1997). Acta Cryst. C53, IUC97000007.
- Steyl, G. (2006). Acta Cryst. E62, m1324-m1325.
- Trofimenko, S. (1972). Chem. Rev. 72, 497-509.
- Trofimenko, S. (1986). Prog. Inorg. Chem. 34, 115-210.

¹ In memory of Professor Xavier Solans i Huguet, deceased September 3, 2007.

supplementary materials

Acta Cryst. (2008). E64, m621 [doi:10.1107/S1600536808008337]

trans-Dichloridobis(triphenylphosphine)palladium(II)

J. Pons, J. García-Antón, X. Solans, M. Font-Bardia and J. Ros

Comment

The coordination chemistry of pyrazole derived ligands has been extensively studied in recent years (Trofimenko, 1972, 1986; La Monica *et al.*, 1997; Mukherjee, 2000). Recently, in our laboratory the synthesis and characterization of a family of 1,3,5-pyrazole derived ligands have been developed (Montoya *et al.* 2005) and we have studied the reactivity towards divalent metal ions. The reaction of $[PdCl_2L^1]$ ($L^1 = 2-(1-ethyl-5-phenyl-1H-pyrazol-3-yl)pyridine with AgBF_4$ followed by the addition of PPh₃ and NaBPh₄ yields the compound $[Pd(L^1)(PPh_3)_2](BPh_4)_2$ (Montoya *et al.*, 2006). The title compound was obtained when the triphenylphosphine ligand was added before the precipitation of the chloride ions with AgBF_4. In this way, PPh₃ ligands displace L^1 to form *trans*-[PdCl_2(PPh_3)_2] (1).

Related compounds are *trans*-[PdCl₂(PPh₃)₂] (**2**) (Ferguson *et al.*, 1982), *trans*-[PdCl₂(PPh₃)₂].C₆H₄Cl₂ (Kitano *et al.*, 1983), *trans*-[PdCl₂(PPh₃)₂].2CHCl₃ (Stark *et al.*, 1997), *trans*-[PdCl₂(PPh₃)₂].CH₂Cl₂ (Oilunkaniemi *et al.*, 2003), and *trans*-[PdCl₂(PPh₃)₂].C₂H₄Cl₂ (Steyl, 2006). There are no solvent molecules present in the structure described in this paper. The same behaviour was found for the structure described by Ferguson (**2**), but differences have been found in the crystal systems and space groups [triclinic PT (**2**); monoclinic $P2_1/c$, (**1**)]. Moreover, the Pd—Cl and Pd—P bond distances (2.3111 (13) Å and 2.3721 (10) Å, respectively) in complex (**1**) are slightly longer than those found in complex (**2**) (2.290 (1) Å and 2.337 (1) Å, respectively).

Experimental

Treatment of 0.14 mmol (0.060 g) of $[PdCl_2(L^1)]$ ($L^1 = 2-(1-ethyl-5-phenyl-1H-pyrazol-3-yl)pyridine)$ with 0.28 mmol (0.054 g) of PPh₃ in 10 ml of dichloromethane and 10 ml of methanol provokes the displacement of the pyrazolic ligand from the coordinative sphere of the metallic cation and the formation of *trans*-[PdCl_2(PPh_3)_2]. This complex precipitates as a yellow solid and was filtered and dried under vacuum. Single crystals were obtained by recrystallization of the complex in dichloromethane/diethyl ether 1:1. Yield: 0.080 g (81%) - C₃₆H₃₀Cl_2P_2Pd (701.84). % C, 61.60; H, 4.30; found: C, 61.33; H, 4.42;. IR (KBr, cm⁻¹): v (C—H)_{ar} 3047; δ (C—H)_{ar} 1437; δ (C—H)_{oop} 693. IR (polyethylene, cm⁻¹): v 376, 358 (Pd—P), v (Pd—Cl). ¹H NMR (250 MHz, [D₁]-chloroform solution) δ = 7.71 (m, 2H, PPh₃ *ortho*), 7.44–7.35 (m, 3H, PPh₃). ¹³C{¹H} NMR (63 MHz, [D₁]-chloroform solution) δ = 135.5, 131.0, 130.0, 128.5 (PPh₃). ³¹P{¹H} NMR (81 MHz, [D₁]-chloroform solution) δ = -21.1 (s, PPh₃).

Refinement

We had serious problems growing up good crystals of reasonable size and quality and, in all cases, we obtained twinned crystals with very broad reflections (bad mosaic structure). Measurement were done in a image plate diffractometer which only measure in a single /f angle.

All H atoms were computed and refined, using a riding model, with an isotropic temperature factor equal to 1.2 times the equivalent temperature factor of the atom which are bonded.

Figures

Fig. 1. trans-Dichlorobis(triphenylphosphine)palladium(II)

trans-Dichloridobis(triphenylphosphine)palladium(II)

Crystal data	
$[PdCl_2(C_{18}H_{15}P_1)_2]$	$F_{000} = 712$
$M_r = 701.84$	$D_{\rm x} = 1.395 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation radiation $\lambda = 0.71073$ Å
a = 9.296 (5) Å	Cell parameters from 26 reflections
b = 19.889 (8) Å	$\theta = 3 - 31^{\circ}$
c = 10.621 (6) Å	$\mu = 0.83 \text{ mm}^{-1}$
$\beta = 121.71 \ (4)^{\circ}$	T = 293 (2) K
$V = 1670.6 (15) \text{ Å}^3$	Prism, yellow
Z = 2	$0.2\times0.17\times0.16~mm$

Data collection

MAR345 with image-plate detector diffractometer	4898 independent reflections
Radiation source: fine-focus sealed tube	3143 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.033$
T = 293(2) K	$\theta_{\text{max}} = 33.3^{\circ}$
φ scans	$\theta_{\min} = 3.8^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 1999)	$h = -14 \rightarrow 12$
$T_{\min} = 0.85, \ T_{\max} = 0.87$	$k = 0 \rightarrow 30$
4898 measured reflections	$l = 0 \rightarrow 16$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.037$	H-atom parameters constrained
$wR(F^2) = 0.077$	$w = 1/[\sigma^2(F_o^2) + (0.0269P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 0.93	$(\Delta/\sigma)_{\rm max} = 0.002$
4898 reflections	$\Delta \rho_{max} = 0.56 \text{ e} \text{ Å}^{-3}$
187 parameters	$\Delta \rho_{min} = -0.36 \text{ e } \text{\AA}^{-3}$
7 restraints	Extinction correction: none
Primary atom site location: structure-invariant direct methods	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}^*/U_{\rm eq}$
Pd	1.0000	0.0000	0.5000	0.04342 (7)
Р	0.84764 (7)	0.09596 (3)	0.36120 (6)	0.04430 (13)
Cl	0.97931 (10)	0.04208 (4)	0.69271 (7)	0.06833 (18)
C1	0.6712 (3)	0.11530 (14)	0.3892 (3)	0.0580 (6)
C2	0.6470 (3)	0.17570 (17)	0.4357 (3)	0.0657 (7)
H2	0.7217	0.2106	0.4529	0.079*
C3	0.5150 (5)	0.1869 (2)	0.4584 (4)	0.0889 (10)
Н3	0.5026	0.2279	0.4939	0.107*
C4	0.4034 (5)	0.1351 (2)	0.4262 (4)	0.0969 (11)
H4	0.3102	0.1429	0.4346	0.116*
C5	0.4210 (5)	0.0737 (2)	0.3832 (4)	0.0976 (11)
Н5	0.3458	0.0394	0.3685	0.117*
C6	0.5576 (4)	0.06221 (17)	0.3603 (4)	0.0811 (8)
Н6	0.5711	0.0207	0.3273	0.097*
C7	0.7530 (3)	0.09435 (13)	0.1606 (3)	0.0614 (6)
C8	0.5790 (4)	0.09538 (17)	0.0615 (3)	0.0835 (9)
H8	0.5064	0.0960	0.0970	0.100*

supplementary materials

0.5128 (6)	0.0955 (2)	-0.0899 (4)	0.1180 (16)
0.3962	0.0965	-0.1547	0.142*
0.6163 (7)	0.0942 (2)	-0.1452 (4)	0.1208 (16)
0.5706	0.0937	-0.2469	0.145*
0.7918 (6)	0.0935 (2)	-0.0474 (4)	0.0996 (12)
0.8631	0.0930	-0.0842	0.120*
0.8601 (4)	0.09361 (17)	0.1056 (3)	0.0774 (8)
0.9767	0.0932	0.1705	0.093*
0.9779 (3)	0.17318 (11)	0.4177 (2)	0.0491 (5)
1.1113 (3)	0.18023 (15)	0.5592 (3)	0.0659 (7)
1.1381	0.1455	0.6266	0.079*
1.2095 (5)	0.2397 (2)	0.6048 (4)	0.0953 (11)
1.3024	0.2438	0.7007	0.114*
1.1653 (5)	0.2915 (2)	0.5048 (5)	0.0961 (11)
1.2282	0.3310	0.5349	0.115*
1.0406 (5)	0.28661 (18)	0.3722 (5)	0.0945 (11)
1.0167	0.3220	0.3067	0.113*
0.9362 (4)	0.22755 (15)	0.3218 (3)	0.0761 (8)
0.8419	0.2256	0.2262	0.091*
	0.5128 (6) 0.3962 0.6163 (7) 0.5706 0.7918 (6) 0.8631 0.8601 (4) 0.9767 0.9779 (3) 1.1113 (3) 1.1381 1.2095 (5) 1.3024 1.1653 (5) 1.2282 1.0406 (5) 1.0167 0.9362 (4) 0.8419	0.5128 (6) 0.0955 (2) 0.3962 0.0965 0.6163 (7) 0.0942 (2) 0.5706 0.0937 0.7918 (6) 0.0935 (2) 0.8631 0.0930 0.8601 (4) 0.09361 (17) 0.9767 0.0932 0.9779 (3) 0.17318 (11) 1.1113 (3) 0.18023 (15) 1.1381 0.1455 1.2095 (5) 0.2397 (2) 1.3024 0.2438 1.1653 (5) 0.2915 (2) 1.2282 0.3310 1.0406 (5) 0.28661 (18) 1.0167 0.3220 0.9362 (4) 0.22755 (15) 0.8419 0.2256	0.5128(6) $0.0955(2)$ $-0.0899(4)$ 0.3962 0.0965 -0.1547 $0.6163(7)$ $0.0942(2)$ $-0.1452(4)$ 0.5706 0.0937 -0.2469 $0.7918(6)$ $0.0935(2)$ $-0.0474(4)$ 0.8631 0.0930 -0.0842 $0.8601(4)$ $0.09361(17)$ $0.1056(3)$ 0.9767 0.0932 0.1705 $0.9779(3)$ $0.17318(11)$ $0.4177(2)$ $1.1113(3)$ $0.18023(15)$ $0.5592(3)$ 1.381 0.1455 0.6266 $1.2095(5)$ $0.2397(2)$ $0.6048(4)$ 1.3024 0.2438 0.7007 $1.1653(5)$ $0.2915(2)$ $0.5048(5)$ 1.2282 0.3310 0.5349 $1.0406(5)$ $0.28661(18)$ $0.3722(5)$ 1.0167 0.3220 0.3067 $0.9362(4)$ $0.22755(15)$ $0.3218(3)$ 0.8419 0.2256 0.2262

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Pd	0.04515 (12)	0.04507 (12)	0.04158 (11)	0.00132 (11)	0.02386 (9)	0.00015 (10)
Р	0.0441 (3)	0.0449 (3)	0.0430 (3)	0.0013 (2)	0.0222 (2)	0.0019 (2)
Cl	0.0810 (4)	0.0703 (4)	0.0607 (3)	0.0072 (3)	0.0421 (3)	-0.0001 (3)
C1	0.0524 (12)	0.0642 (15)	0.0558 (12)	0.0073 (9)	0.0274 (11)	0.0050 (10)
C2	0.0627 (16)	0.0724 (19)	0.0595 (15)	0.0074 (13)	0.0304 (13)	0.0001 (11)
C3	0.088 (2)	0.104 (3)	0.081 (2)	0.018 (2)	0.0492 (18)	-0.0020 (18)
C4	0.081 (2)	0.130 (4)	0.092 (2)	0.020 (2)	0.0533 (19)	0.014 (2)
C5	0.075 (2)	0.108 (3)	0.115 (3)	-0.009 (2)	0.054 (2)	0.007 (2)
C6	0.0719 (18)	0.0721 (19)	0.111 (2)	0.0005 (13)	0.0560 (18)	0.0040 (18)
C7	0.0689 (12)	0.0598 (15)	0.0481 (11)	0.0004 (12)	0.0256 (9)	0.0019 (10)
C8	0.0704 (13)	0.094 (2)	0.0730 (14)	0.0068 (17)	0.0284 (13)	0.0058 (16)
C9	0.111 (3)	0.130 (3)	0.0689 (15)	-0.001 (3)	0.016 (2)	0.002 (2)
C10	0.148 (4)	0.126 (4)	0.070 (2)	-0.017 (3)	0.045 (3)	-0.003 (2)
C11	0.129 (3)	0.111 (3)	0.082 (2)	-0.022 (3)	0.071 (2)	-0.007 (2)
C12	0.0803 (19)	0.091 (2)	0.0613 (15)	-0.0088 (17)	0.0374 (14)	0.0021 (14)
C13	0.0493 (11)	0.0486 (12)	0.0566 (10)	0.0000 (9)	0.0328 (9)	-0.0006 (9)
C14	0.0632 (15)	0.0688 (16)	0.0605 (11)	-0.0008 (12)	0.0290 (10)	-0.0002 (11)
C15	0.088 (2)	0.090 (2)	0.100 (2)	-0.0232 (18)	0.044 (2)	-0.020(2)
C16	0.103 (3)	0.083 (2)	0.122 (3)	-0.024 (2)	0.073 (3)	-0.019 (2)
C17	0.117 (3)	0.071 (2)	0.105 (3)	-0.008 (2)	0.065 (2)	0.0084 (19)
C18	0.088 (2)	0.0688 (19)	0.0718 (17)	-0.0061 (16)	0.0424 (16)	0.0055 (13)

Geometric parameters (Å, °)

Pd—Cl	2.3111 (13)	C8—C9	1.387 (5)

Pd—Cl ⁱ	2.3111 (13)	С8—Н8	0.9300
Pd—P	2.3721 (10)	C9—C10	1.366 (6)
Pd—P ⁱ	2.3721 (10)	С9—Н9	0.9300
Р—С7	1.829 (3)	C10-C11	1.400 (6)
Р—С13	1.849 (2)	C10—H10	0.9300
P—C1	1.855 (3)	C11—C12	1.400 (4)
C1—C2	1.361 (4)	C11—H11	0.9300
C1—C6	1.408 (4)	C12—H12	0.9300
C2—C3	1.387 (4)	C13—C14	1.362 (3)
С2—Н2	0.9300	C13—C18	1.394 (4)
C3—C4	1.373 (5)	C14—C15	1.416 (4)
С3—Н3	0.9300	C14—H14	0.9300
C4—C5	1.342 (5)	C15—C16	1.378 (5)
С4—Н4	0.9300	C15—H15	0.9300
C5—C6	1.432 (5)	C16—C17	1.273 (6)
С5—Н5	0.9300	C16—H16	0.9300
С6—Н6	0.9300	C17—C18	1.436 (5)
С7—С8	1.391 (4)	C17—H17	0.9300
C7—C12	1.394 (4)	C18—H18	0.9300
Cl—Pd—Cl ⁱ	180.0	C9—C8—C7	120.5 (4)
Cl—Pd—P	87.62 (4)	С9—С8—Н8	119.8
Cl ⁱ —Pd—P	92.38 (4)	С7—С8—Н8	119.8
Cl—Pd—P ⁱ	92.38 (4)	C10—C9—C8	121.0 (4)
Cl ⁱ —Pd—P ⁱ	87.62 (4)	С10—С9—Н9	119.5
P—Pd—P ⁱ	180.0	С8—С9—Н9	119.5
C7—P—C13	102.99 (12)	C9—C10—C11	119.4 (4)
C7—P—C1	105.43 (13)	С9—С10—Н10	120.3
C13—P—C1	105.00 (12)	C11—C10—H10	120.3
C7—P—Pd	118.32 (9)	C10-C11-C12	120.2 (4)
C13—P—Pd	113.03 (8)	C10-C11-H11	119.9
C1—P—Pd	110.89 (9)	С12—С11—Н11	119.9
C2—C1—C6	119.6 (3)	C7—C12—C11	119.9 (3)
C2—C1—P	124.7 (2)	C7—C12—H12	120.1
C6—C1—P	115.7 (2)	C11—C12—H12	120.1
C1—C2—C3	122.3 (3)	C14—C13—C18	117.9 (2)
C1—C2—H2	118.8	С14—С13—Р	120.31 (19)
С3—С2—Н2	110.0	640 G40 D	101 50 (10)
	118.8	C18—C13—P	121.59 (19)
C4—C3—C2	118.8 117.2 (4)	C18—C13—P C13—C14—C15	121.59 (19) 120.9 (3)
C4—C3—C2 C4—C3—H3	118.8 117.2 (4) 121.4	C13—C13—P C13—C14—C15 C13—C14—H14	121.59 (19) 120.9 (3) 119.6
C4—C3—C2 C4—C3—H3 C2—C3—H3	118.8 117.2 (4) 121.4 121.4	C13—C13—P C13—C14—C15 C13—C14—H14 C15—C14—H14	121.59 (19) 120.9 (3) 119.6 119.6
C4—C3—C2 C4—C3—H3 C2—C3—H3 C5—C4—C3	118.8 117.2 (4) 121.4 121.4 123.8 (4)	C18—C13—P C13—C14—C15 C13—C14—H14 C15—C14—H14 C16—C15—C14	121.59 (19) 120.9 (3) 119.6 119.6 118.9 (3)
C4—C3—C2 C4—C3—H3 C2—C3—H3 C5—C4—C3 C5—C4—H4	118.8 117.2 (4) 121.4 121.4 123.8 (4) 118.1	C18—C13—P C13—C14—C15 C13—C14—H14 C15—C14—H14 C16—C15—C14 C16—C15—C14	121.59 (19) 120.9 (3) 119.6 119.6 118.9 (3) 120.6
C4—C3—C2 C4—C3—H3 C2—C3—H3 C5—C4—C3 C5—C4—H4 C3—C4—H4	118.8 117.2 (4) 121.4 121.4 123.8 (4) 118.1 118.1	C18—C13—P C13—C14—C15 C13—C14—H14 C15—C14—H14 C16—C15—C14 C16—C15—H15 C14—C15—H15	121.59 (19) 120.9 (3) 119.6 119.6 118.9 (3) 120.6 120.6
C4—C3—C2 C4—C3—H3 C2—C3—H3 C5—C4—C3 C5—C4—H4 C3—C4—H4 C4—C5—C6	118.8 117.2 (4) 121.4 121.4 123.8 (4) 118.1 118.1 118.7 (4)	C18—C13—P C13—C14—C15 C13—C14—H14 C15—C14—H14 C16—C15—C14 C16—C15—H15 C14—C15—H15 C17—C16—C15	121.59 (19) 120.9 (3) 119.6 119.6 118.9 (3) 120.6 120.6 121.7 (4)
C4—C3—C2 C4—C3—H3 C2—C3—H3 C5—C4—C3 C5—C4—H4 C3—C4—H4 C4—C5—C6 C4—C5—H5	118.8 117.2 (4) 121.4 121.4 123.8 (4) 118.1 118.1 118.7 (4) 120.6	C18—C13—P C13—C14—C15 C13—C14—H14 C15—C14—H14 C16—C15—C14 C16—C15—H15 C14—C15—H15 C17—C16—C15 C17—C16—H16	121.59 (19) 120.9 (3) 119.6 119.6 118.9 (3) 120.6 120.6 121.7 (4) 119.2
C4—C3—C2 C4—C3—H3 C2—C3—H3 C5—C4—C3 C5—C4—H4 C3—C4—H4 C4—C5—C6 C4—C5—H5 C6—C5—H5	118.8 117.2 (4) 121.4 121.4 123.8 (4) 118.1 118.1 118.7 (4) 120.6 120.6	C18—C13—P C13—C14—C15 C13—C14—H14 C15—C14—H14 C16—C15—C14 C16—C15—H15 C14—C15—H15 C17—C16—C15 C17—C16—H16 C15—C16—H16	121.59 (19) 120.9 (3) 119.6 119.6 118.9 (3) 120.6 120.6 121.7 (4) 119.2 119.2

supplementary materials

С1—С6—Н6	120.9	C16—C17—H17	119.4
С5—С6—Н6	120.9	C18—C17—H17	119.4
C8—C7—C12	119.1 (3)	C13—C18—C17	119.2 (3)
C8—C7—P	122.5 (3)	C13—C18—H18	120.4
C12—C7—P	118.4 (2)	C17—C18—H18	120.4
Cl—Pd—P—C1	41.9 (2)	Cl—Pd—P—C7	163.9 (2)
Cl—Pd—P—C13	-75.7 (2)		

Symmetry codes: (i) -x+2, -y, -z+1.

